ZERO DOUBTS

MATHEMATICS (BY PANDEY SIR)

Class-12TH WEEKLY ASSIGNMENT (22- 28/06/24)

SATURDAY (22/06/24)

1. Let
$$z = 1 + i$$
 and $z_1 = \frac{1 + i\bar{z}}{\bar{z}(1-z) + \frac{1}{z}}$. Then $\frac{12}{\pi} \arg{(z_1)}$ is equal to ___. [Ans: (9)]

1. Let
$$z = 1 + i$$
 and $z_1 = \frac{1+i\bar{z}}{\bar{z}(1-z)+\frac{1}{z}}$. Then $\frac{12}{\pi} \arg{(z_1)}$ is equal to ___. [Ans: (9)]

2. The value of $\left(\frac{1+\sin{\frac{2\pi}{9}}+i\cos{\frac{2\pi}{9}}}{1+\sin{\frac{2\pi}{9}}-i\cos{\frac{2\pi}{9}}}\right)^3$ is [Ans: (c)]

a)
$$-\frac{1}{2}(1-i\sqrt{3})$$

b)
$$\frac{1}{2}(1-i\sqrt{3})$$

c)
$$-\frac{1}{2}(\sqrt{3}-i)$$

d)
$$\frac{1}{2}(\sqrt{3}+i)$$

SUNDAY (23/06/24)

3. If for
$$z=\alpha+i\beta$$
, $|z+2|=z+4(1+i)$, then $\alpha+\beta$ and $\alpha\beta$ are the roots of the equation [Ans: (b)]

a)
$$x^2 + 3x - 4 = 0$$

b)
$$x^2 + 7x + 12 = 0$$

c)
$$x^2 + x - 12 = 0$$

d)
$$x^2 + 2x - 3 = 0$$

4. Let the complex number
$$z=x+iy$$
 be such that $\frac{2z-3i}{2z+i}$ is purely imaginary. If $x+y^2=0$, then y^4+y^2-y is equal to [Ans: (c)]

a)
$$\frac{2}{3}$$

a)
$$\frac{2}{3}$$

b) $\frac{3}{2}$
c) $\frac{3}{4}$
d) $\frac{4}{3}$

c)
$$\frac{2}{3}$$

d)
$$\frac{4}{3}$$

MONDAY (24/06/24)

5. If
$$|z_1| = |z_2| = \cdots = |z_n| = 1$$
, then $|z_1 + z_2 + \cdots + z_n|$ is always equal to:[Ans: (b)]

a)
$$|z_1| + |z_2| + \dots + |z_n|$$

b)
$$\left| \frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n} \right|$$

c) $\frac{1}{|z_1|} + \frac{1}{|z_2|} + \dots + \frac{1}{|z_n|}$

c)
$$\frac{1}{|z_1|} + \frac{1}{|z_2|} + \dots + \frac{1}{|z_n|}$$

d) None of these

6. The value of sum
$$\sum_{n=1}^{13} (i^n + i^{n+1})$$
, where $i = \sqrt{-1}$, equals [Ans: (b)]

b)
$$i - 1$$

c)
$$-i$$

TUESDAY (25/06/24)

- 7. If $w = \alpha + i\beta$, where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that $\left(\frac{w \overline{w}z}{1 z}\right)$ is purely real, then the set of values of z is **[Ans: (b)]**
- a) $|z| = 1, z \neq 2$
- b) $|z| = 1 \text{ and } z \neq 1$
- c) z = 2
- d) None of these
- 8. Let α, β be the roots of the equation $x^2 x + 2 = 0$ with $Im(\alpha) > Im(\beta)$. Then $\alpha^6 + \alpha^4 + \beta^4 5\alpha^2$ is equal to____. [Ans: (13)]

WEDNESDAY (26/06/24)

- 9. Let $A = \left\{\theta \in \left(-\frac{\pi}{2}, \pi\right) : \frac{3+2i\sin\theta}{1-2i\sin\theta} \text{ is purely imaginary}\right\}$. Then, the sum of the elements in A is
- a) $\frac{3\pi}{4}$
- b) $\frac{-4}{6}$
- c) π
- d) $\frac{2\pi}{3}$
- 10. Let $S = \left\{ z \in C \{i, 2i\} : \frac{z^2 + 8iz 15}{z^2 3iz 2} \in R \right\}$, $\alpha \frac{13}{11}i \in S$, $\alpha \in R \{0\}$, then $242\alpha^2$ is equal to _____. [Ans: (1680)]

THURSDAY (27/06/24)

- 11. Let a, b, x and y be real numbers such that a b = 1 and $y \ne 0$. If the complex number z = x + iy satisfies $Im\left(\frac{az+b}{z+1}\right) = y$, then which of the following is(are) possible value(s) of x? [Ans: (b, d)]
- a) $1 \sqrt{1 + y^2}$
- b) $-1 \sqrt{1 y^2}$
- c) $1 + \sqrt{1 + y^2}$
- d) $-1 + \sqrt{1 y^2}$
- 12. Let $z_1=a+ib$ and $z_2=c+id$ are complex numbers such that $|z_1|=|z_2|=1$ and $Re(z_1\overline{z_2})=0$, then the pair of complex numbers $w_1=a+ic$ and $w_2=b+id$ satisfies [Ans: (a, b, c)]
- a) $|w_1| = 1$
- b) $|w_2| = 1$
- c) $Re(w_1\overline{w_2}) = 0$
- d) None of these

FRIDAY (28/06/24)

13. Let $S = \{z = x + iy: \frac{2z - 3i}{4z + 2i} \text{ is a real number}\}$. Then which of the following is not correct? [Ans: (b)]

a)
$$y + x^2 + y^2 \neq -\frac{1}{4}$$

b)
$$(x,y) = (0, -\frac{1}{2})$$

c) $x = 0$

c)
$$x = 0$$

d)
$$y \in \left(-\infty, -\frac{1}{2}\right) \cup \left(-\frac{1}{2}, \infty\right)$$

14. Let z_1 and z_2 be complex numbers such that $z_1 \neq z_2$ and $|z_1| = |z_2|$. If z_1 has positive real part and z_2 has negative imaginary part, then $\frac{z_1+z_2}{z_1-z_2}$ may be

[Ans: (a, d)]

- a) Zero
- b) real and positive
- c) real and negative
- d) purely imaginary