Questions Based on Electric Potential Energy

- 1. Two point charges $+10\mu$ C and -10μ C are separated by a distance of 2.0 cm in air. (a) Calculate the potential energy of the system, assuming the zero of the potential energy to be at infinity.
- 2. Two point charges A and B of values $+15\mu$ C and $+9\mu$ C are kept 18 cm apart in air. Calculate the work done when charge B is moved by 3 cm towards A.
- 3. Two positive point charges of $0.2 \ \mu C$ and $0.01 \ \mu C$ are placed $10 \ cm$ apart. Calculate the work done in reducing the distance to 5 cm.
- 4. Two point charges 20×10^{-6} C and -4×10^{-6} C are separated by a distance of 50 *cm* in air. (i) Find the point on the line joining the charges, where the electric potential is zero. (ii) Also find the electrostatic potential energy of the system.
- 5. Three charges -q, +Q, and -q are placed at equal distances on a straight line. If the potential energy of the system of three charges is zero, what is the ratio Q:q?
- 6. Three point charges +q, +2q and Q are placed at the three vertices of an equilateral triangle.
 Find the value of charge Q (in terms of q), so that electric potential energy of the system is zero.
- 7. Find the amount of work done in arranging the three point charges, on the vertices of an equilateral triangle *ABC*, of side 10 *cm*, as shown in figure.

8. Four charges are arranged at the corners of a square *ABCD* of side *d* as shown in fig. (i) Find the work required to put together this arrangement. (ii) A charge q_0 is brought to the centre *E* of the square, the four charges being held fixed at its corners. How much extra work is needed to this?

9. Three point charges +Q, +2Q and -3Q are placed at the vertices of an equilateral triangle *ABC* of side *l*. If these charges are displaced to the midpoints A_1 , B_1 and C_1 respectively, find the amount of the work done in shifting the charges to the new locations.

10. (a) Two point charges $+Q_1$ and $-Q_2$ are placed r distance apart. Obtain the expression for the amount of work done to place a third charge Q_3 at the midpoint of the line joining the two charges.

(b) At what distance from charge $+Q_1$ on the line joining the two charges (in terms of Q_1, Q_2 and r) will this work done be zero?

- 11. Two identical particles, each having a charge of 2.0×10^{-4} C and mass of 10 g, are kept at a separation of 10 cm and then released. What would be the speeds of the particles when the separation becomes large?
- 12. Two particles have equal masses of 5.0 g each an opposite charges of $+4 \times 10^{-5}$ C and -4×10^{-5} C. They released from rest with a separation of 1.0 m between them. Find the speeds of the particles when the separation is reduced to 50 cm.
- 13. (a) Determine the electrostatic potential energy of a system consisting of two charges 7μ C and -2μ C (and with no external fields) placed at ($-9 \ cm, 0, 0$) and ($9 \ cm, 0, 0$) respectively.
 - (b) How much work is required to separate the two charges infinitely away from each other?
 - (c) Suppose the same system of charges is now placed in an external electric field E =

 $A\left(\frac{1}{r^2}\right)$; $A = 9 \times 10^5 \text{ Cm}^{-2}$. What would be the electrostatic energy of the configuration would be ?

Answers:

1.	2.	3.	4.	
—45 J	1.35 J	1.8	(i)	41 cm from the charge of
		$\times 10^{-4}$ J		$20 \times 10^{-6} \mathrm{C}$
			(ii)	-144 J
5.	6.	7.	8.	
1:4	Q = -2q/3	-3.24 J	0	
9.	10.	11.	12.	
$1 7Q^2$	x	$600 ms^{-1}$	53.67 ms ⁻	-1
$-\frac{1}{4}\pi\varepsilon_0.\frac{1}{l}$	$_{-}$ rQ_{1}			
	$-\overline{Q_1+Q_2}$			
13.				
(a) −0.7 J				
(b) 0.7 J				
(c) 49.3 J				