Sri Pratyangira Institute

{Plot no. – 2, 3 – A Sector 2, PNB Road, Rachna Vaishali, GZB, (U.P)}

(Mob. no. 9871948232, 8742904739)

Class - 12th

DPP - 04

Matrices

	Topics: Transpose of matrices.
1.	If $A = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & -1 & -4 \end{bmatrix}$, verify that $(AB)^T = B^T A^T$. If $A = \begin{bmatrix} 3 \\ 5 \\ 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 4 \end{bmatrix}$, verify that $(AB)^T = B^T A^T$.
2.	If $A = \begin{bmatrix} 3 \\ 5 \\ 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 4 \end{bmatrix}$, verify that $(AB)^T = B^T A^T$.
3.	If $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, then find the values of θ satisfying the equation $A^T + A = I_2$.
4.	Find the values of x, y, z if the matrix $A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix}$ satisfy the equation $A^T A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix}$
	<i>I</i> ₃ .
5.	If $A^T = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, find $A^T - B^T$.
6.	Show that the elements on the main diagonal of a skew – symmetric matrix are all
	zero.
7.	If the matrix $A = \begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix}$ is skew – symmetric, find the values of a, b and c .
8.	Show that the matrix $B^T A B$ is symmetric or skew – symmetric according as A is
	symmetric or skew – symmetric.
9.	Express the matrix $A = \begin{bmatrix} 4 & 2 & -1 \\ 3 & 5 & 7 \\ 1 & -2 & 1 \end{bmatrix}$ as the sum of a symmetric and a skew –
	symmetric matrix.
10	D. Express the matrix $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ as the sum of a symmetric and a skew – symmetric
	matrix.
11	. If A and B are symmetric matrices, then show that AB is symmetric iff $AB = BA$ is a A and B commute
	BA i. e A and B commute.