Sri Pratyangira Institute

{Plot no. – 2, 3A Sector 3, PNB Road, Rachna Vaishali, GZB, (U.P)}

(Mob. no. 9871948232, 8742904739)

Class - 12th

DPP - 03

Matrices

	Topics: Multiplication of matrices.
1.	If <i>A</i> , <i>B</i> , <i>C</i> are three matrices such that $A = \begin{bmatrix} x & y & z \end{bmatrix}$, $B = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$, $C = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, find <i>ABC</i> .
2.	ABC. If $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2$, find <i>a</i> and <i>b</i> .
3.	Let $A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$. Find a matrix D such that $CD - AB = 0$.
4.	If $\begin{bmatrix} 2 & 3\\ 5 & 7 \end{bmatrix} \begin{bmatrix} 1 & -3\\ -2 & 4 \end{bmatrix} = \begin{bmatrix} -4 & 6\\ -9 & x \end{bmatrix}$, find x.
5.	If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 - 5A + 7I_2 = 0$.
6.	If $A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$, find $A^2 - 5A - 14I$.
7.	Find the matrix A such that: (i) $\begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} A = \begin{bmatrix} -4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3 \end{bmatrix}$ (ii)
0	$\begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = A \text{ (iii) } A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \\ 11 & 10 & 9 \end{bmatrix}$
8.	To promote making of toilets for women, an organisation tried to generate awareness through (i) house calls (ii) letters, and (iii) announcements. The cost for
	each mode per attempt is given below: (i) Rs.50 (ii) Rs.20 (iii) Rs.40. The number of
	attempts made in village in three villages X, Y, Z are given below. Find the total cost
	incurred by the organisation for three villages separately, using matrices.
	(i) (ii) (iii) (iii)

	(i)	(ii)	(iii)			
Х	400	300	100			
Υ	300	250	75			
Z	500	400	150			
$\frac{1}{100} \cos 2\theta \sin 2\theta$						

9. If
$$A = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$$
, find A^2 .
10. If $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$, find $A^2 - 5A + 4I$ and hence find a matrix X such that $A^2 - 5A + 4I + X = 0$.