Sri Pratyangira Institute

{3 - A Sector 2, PNB Road, Vaishali, GZB, (U.P)}

(Mob. no. 9871948232, 8742904739)

Class - 12th

 $\mathbf{DPP}-\mathbf{09}$

Electric Charges and Fields

Topics:

• Application of Gauss Theorem

- 1. An infinite line produces a field of $9 \times 10^4 \text{ NC}^{-1}$ at a distance of 4 cm. Calculate the linear charge density. (Ans: $2 \times 10^{-7} \text{ Cm}^{-1}$)
- 2. A cylinder of large length carries a charge of 2×10^{-8} Cm⁻¹. Find the electric field at a distance of 0.2 *cm* from it. (Ans: 1800 Vm⁻¹)
- 3. Two large metal plates each of area $1 m^2$ are placed facing each other at a distance of 10 cm and carry equal and opposite charges on their faces. If the electric field between the plates is 100 NC^{-1} , find the charge on each plate. (Ans: 8.85×10^{-10} C)
- 4. A charge of 17.7×10^{-4} C is distributed uniformly over a large sheet of area 200 m^2 . Calculate the electric field intensity at a distance of 20 cm from it in air. (Ans: $5 \times 10^5 NC^{-1}$)
- 5. A charged particle having a charge of -2.0×10^{-6} C is placed close to a non-conducting plate having a surface charge density of 4.0×10^{-6} Cm⁻². Find the force of attraction between the particle and the plate. (Ans: 0.45 N)
- 6. A particle of mass 9×10^{-5} g is kept over a large horizontal sheet of charge density 5×10^{-5} Cm⁻². What charge should be given to the particle, so that of released, it does not fall? (Ans: 3.12×10^{-13} C)
- 7. Two long parallel wires carry charges λ_1 and λ_2 per unit length. The separation between their axes is d. Find the magnitude of the force exerted on unit length of one due to the charge on the other. $\left(\text{Ans:} f = \frac{\lambda_1 \lambda_2}{2\pi\varepsilon_0 d}\right)$
- 8. An electric dipole consists of charges $\pm 2 \times 10^{-8}$ C, separated by a distance of 2 mm. It is placed near a long line charge of density 4.0×10^{-4} Cm⁻¹, as shown in figure, such that the negative charge is at a distance of 2 cm from the line charge. Calculate the force acting on the dipole.

- 9. A large plane sheet of charge having surface charge density $5.0 \times 10^{-16} \text{ Cm}^{-2}$ lies in the *X*-*Y* plane. Find the electric flux through a circular area of radius 0.1 m, if the normal to the circular area makes an angle of 60° with the *Z*-axis. (Ans: $4.44 \times 10^{-7} \text{ Nm}^2 \text{C}^{-1}$)
- 10. A spherical shell of metal has a radius of 0.25 m and carries a charge of 0.2 μ C. Calculate the electric field intensity at a point (i) inside the shell, (ii) just outside the shell and (iii) 3.0 m from the centre of the shell. (Ans: (i)0, (*ii*)2.88 × 10⁴ NC⁻¹ (*iii*)200 NC⁻¹)

Physics by – Nirbhay Sir

(Ans: 6.5 N)